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Abstract

This study proposes an active control method to suppress the responses of structural systems. The present control

method is a synthesis algorithm of the linear quadratic Gaussian (LQG) and input estimation approaches. By using the

synthesis method, structural vibrations can be suppressed more effectively due to the actions of the proper control forces.

In this work, numerical simulations of active vibration control of lumped-mass systems are performed to verify the

feasibility and effectiveness of the proposed algorithm. The simulation results demonstrate that the control performance of

the present method for structures with external excitation forces is better than that of the conventional LQG approach.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

For the design of structural systems, to make the structures have a desired transient and steady-state
response is a very important and necessary task. In terms of passive control methods, the unwanted vibration
problems can be solved effectively. However, for some physical systems, the structural parameters such as
mass, damping and stiffness cannot be chosen or changed to make the responses satisfy the requirements
because of design constraints. Therefore, many active control methods are developed by using external
adjustable or active devices to shape or control the responses. Comparing with passive control methods, active
control methods can suppress the structural vibration more effectively under various conditions.

Among the active vibration control methods, optimal control methods, such as linear quadratic regulator
(LQR) and LQG, are popular with many structural engineers. Yang [1] applied the optimal control theorem to
control the vibrations of civil engineering structures under stochastic dynamic loadings such as earthquakes
and wind loads. Chung et al. [2,3] presented an experimental study of active control for single degree-of-
freedom (sdof) and multiple degree-of-freedom (mdof) seismic structures by using tendons through an optimal
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

A constant matrix
B constant matrix
D constant matrix
G constant matrix
Bs sensitivity matrices
C damping matrix
F input force vector (the unknown inputs

to be estimated)
U control force vector
H measurement matrix
I identity matrix
k time (discretized)
K stiffness matrix
Ka Kalman gain
Kb correction gain
Kr regulator gain
KN regular gain of infinite horizon
M mass matrix
Ms sensitivity matrices
P filter’s error covariance matrix
Pb error covariance matrix
Q process noise covariance matrix
Qs scalar of process noise covariance
R measurement noise covariance matrix
Rv measurement noise covariance
S innovation covariance
Q0 weighting matrix for the final state
Q1 weighting matrix for the response
Q2 weighting matrix for the control force
Qs state weighting
Qc control weighting

t time (continuous)
v measurement noise vector
w process noise vector
X state vector
Y relative displacement vector
_Y relative velocity vector
€Y relative acceleration vector

Z observation vector
g fading factor
G input matrix
d Kronecker delta
DT sampling time
Dt incremental time
s standard deviation
F state transition matrix
y relative displacement
_y relative velocity
€y relative acceleration
m mass
k stiffness constant of the linear term
c damping constant of the linear term
a(t) absolute acceleration of the base motion

Superscripts

^ estimated
– estimated by filter
T transpose of matrix
* nominal

Subscripts

i, j indices
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closed-loop control scheme. They also presented the optimal direct output feedback and acceleration
feedback control algorithms for seismic structures [4–6]. Yang et al. [7] used the instantaneous optimal
control method, which minimizes the quadratic performance index at every time instant, to overcome
the deficiency of neglecting the earthquake input. An experimental work to verify the control method
was also presented [8]. Loh et al. [9] conducted an active structural control experiment to verify
the current state-of-the-art control algorithm by using a full-scale building with active bracing devices.
Chang and Yu [10] proposed a simple pole placement technique for the control of a structural
system subjected to a white noise ground excitation. Recently, Xu and Yang [11] applied the dominant
internal model approach to implement the predictive control of structural responses to external excitations.
Akhiev et al. [12] used the multipoint performance index for the vibration suppression of earthquake-excited
structures.

In all of the above-mentioned references, the control algorithms can be grouped into two types, one
ignoring the input excitations term, and the other considering that. For the latter type, the input
excitations need to be measurable or the class of the disturbances has to be known. However, many
physical structural systems in fact contain arbitrary, unmeasurable excitation forces. Hence, the object
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of this study is to develop a method using the quadratic optimal control that involves considering the
arbitrary external loadings or unmeasurable disturbances in the calculation of control forces. The method
consists of the LQG and input estimation approaches [13]. The input estimation approach has been
successfully used to identify input forces for structural systems [14,15]. In this study, the negative values
of estimated input forces are added into the control forces evaluated by LQG regulator to eliminate the
external loadings.

This paper first briefly reviews the equations of motion of lumped-mass structural systems subjected by
seismic excitations. A synthesis control algorithm of suppressing the structural vibrations is then developed.
The control method is composed of the LQG regulator and input estimation approach. The feasibility of the
proposed method is verified by numerical simulations of active vibration controls for the lumped-mass
systems. The dynamic responses of structural systems are obtained by Newmark’s b method. The proposed
algorithm then uses the responses to simulate the measurements of the observer. From the control results of
the lumped-mass structures, we can conclude that the proposed algorithm can suppress structural vibrations
more effectively and is better than the conventional LQG approach.
2. Modeling of the structural system

2.1. Equations of motion

For a dof lumped-mass structural system under active control, as shown in Fig. 1(a), the equations of
motion can be written as below:

M €Y ðtÞ þ C _Y ðtÞ þ KY ðtÞ ¼ F ðtÞ þDUðtÞ, (1)

where M denotes the n� n mass matrix, C the n� n damping matrix, K the n� n stiffness matrix, D the
n� n control force distribution matrix, F(t) the n� 1 input force vector, U(t) the n� 1 control force vector,
and €Y , _Y , Y the n� 1 vectors of relative acceleration, velocity and displacement, respectively; and
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Fig. 1. A mdof lumped-mass structure (a) under force excitation, and (b) under seismic excitation.
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In order to investigate structures with a base motion excitation, we also consider an mdof structural system
subjected to an earthquake ground motion, as shown in Fig. 1(b). The input forces, i.e., external applied
forces, in Eq. (1) are replaced by the mass times the acceleration vector. It follows that

M €Y ðtÞ þ C _Y ðtÞ þ KðtÞY ðtÞ ¼ �M½1̄�aðtÞ þDUðtÞ, (2)

where [1̄] is a n� 1 column vector whose first element is one, the other elements are all to be zeros and a(t) is
the absolute acceleration of the base motion or ground motion. In fact, Eq. (2) can be regarded as a special
case of Eq. (1).
2.2. Evaluation of dynamic responses

The Newmark’s b method is used to predict the responses of linear lumped-mass structures acted by
dynamic loadings and control forces. Considering the simplicity and efficiency, we adopt the constant average
acceleration method (i.e., b ¼ 1

4
). The method is a forward integration in time domain and unconditionally
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stable. In terms of the incremental equations of motion, the responses of the controlled structures at every time
step can be computed as follows [16]:

KD ¼ K þ
2

Dt
C þ

4

Dt2
M, (3)

F D ¼ DF þ DU þ 2C _Y ðtÞ þM
4

Dt
_Y ðtÞ þM2 €Y ðtÞ, (4)

DY ¼ K�1D F D, (5)

Y ðtþ DtÞ ¼ Y ðtÞ þ DY , (6)

_Y ðtþ DtÞ ¼
2

Dt
DY � _Y ðtÞ, (7)

€Y ðtþ DtÞ ¼
4

Dt2
DY �

4

Dt
_Y ðtÞ � €Y ðtÞ, (8)

where KD, FD, DF, DU, DY, Dt are dynamic stiffness matrix, equivalent dynamic load matrix, incremental
input force matrix, incremental control force matrix, incremental displacement matrix and incremental time,
respectively. In this study, the white noises, which were assumed to be the pseudo process and measurement
noises, were added into the input forces and simulated pure responses of Eq. (1). The simulated dynamic
responses corrupted by the pseudo process and measurement noises are used to simulate the real measured
responses.

2.3. State space model of the system

To apply the input estimation approach and LQG theory to structural systems, we first transform the
equations of motion into the state equations. The transformation can be achieved by selecting the state vector
X ðtÞ ¼ ½Y ðtÞ; _Y ðtÞ�T. According to Eq. (1), the continuous-time state and measurement equations can be
written as

_X ðtÞ ¼ A X ðtÞ þ B F ðtÞ þ GUðtÞ, (9)

ZðtÞ ¼ H X ðtÞ, (10)

where

AðtÞ ¼
0n�n In�n

�M�1 K �M�1 C

� �
; B ¼

0n�n

M�1

� �
; G ¼

0n�n

M�1 D

� �
,

H ¼ In�n 0n�n

� �
,

X ðtÞ ¼ x1ðtÞ x2ðtÞ � � � x2n�1ðtÞ x2nðtÞ
� �T

.

F ðtÞ ¼ F 1ðtÞ F2ðtÞ � � � Fn�1ðtÞ F nðtÞ
� �T

.

Next, the continuous state and measurement equations are discretized over time intervals of length DT.
Considering the uncertainties and disturbances in the real physical world, the input process and measurement
noises are added into the discretized state and measurement equations, respectively. The discrete-time forms of
the state and measurement equations are shown as follows:

X ðkÞ ¼ FX ðk � 1Þ þ G ðF ðk � 1Þ þ wðk � 1ÞÞ þ LUðk � 1Þ, (11)

ZðkÞ ¼ H X ðkÞ þ vðkÞ, (12)
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where

F ¼ expðADTÞ,

G ¼
Z kDT

ðk�1ÞDT

exp½AðkDT � tÞ�Bdt,

L ¼
Z kDT

ðk�1ÞDT

exp½AðkDT � tÞ�G dt,

H ¼ In�n 0n�n

� �
,

F ðk � 1Þ ¼ F 1ðk � 1Þ F 2ðk � 1Þ � � � Fn�1ðk � 1Þ F nðk � 1Þ
� �

,

ZðkÞ ¼ z1ðkÞ z2ðkÞ � � � zn�1ðkÞ znðkÞ
� �

,

wðkÞ ¼ w1ðkÞ w2ðkÞ � � � wn�1ðkÞ wnðkÞ
� �

,

vðkÞ ¼ v1ðkÞ v2ðkÞ � � � vn�1ðkÞ vnðkÞ
� �

,

where X(k) is the state vector, F(k) the sequence of deterministic input, DT sampling time interval, Z(k) the
observation vector. The process noise vector w(k) is assumed to be zero mean and white with variance
EfwðkÞwðjÞTg ¼ Qdkj. Here, dkj is the Kronecker delta. The measurement noise vector v(k) is also assumed to
be zero mean and white. The variance of v(k) is given by EfvðkÞ vðjÞTg ¼ Rdkj. Here, R ¼ s2 and s represents
the standard deviation of the measurement noise. The matrices F, G, L, and H are the state transition matrix,
input matrix, control matrix, and measurement matrix, respectively.

3. Control algorithm

3.1. The recursive input estimation approach

In the previous section, the discrete-time state equations of a linear mdof lumped-mass system subjected to
dynamic loads and control forces have been derived. The magnitudes of the unknown input loads can be
estimated by an inverse method from the noisy measurements of the system responses. For linear structural
systems, the estimation method consists of two parts; one is the Kalman filter [17,18] with control but no input
terms and the other is a recursive least-squares estimator. The recursive least-squares estimator is derived to
compute the onset time histories of the unknown input loads by utilizing the Kalman gain, residual innovation
covariance, and residual innovation generated by the Kalman filter. The detailed derivation and explanation
of this technique can be found in Tuan et al. [13].

The equations of the Kalman filter with control but no input terms are

X̄ ðk=k � 1Þ ¼ FX̄ ðk � 1=k � 1Þ þ LUðk � 1Þ, (13)

Pðk=k � 1Þ ¼ FPðk � 1=k � 1ÞFT þ GQGT, (14)

Z̄ðkÞ ¼ ZðkÞ �H½FX̄ ðk � 1=k � 1Þ þ LUðk � 1Þ�, (15)

SðkÞ ¼ HPðk=k � 1ÞHT þ R, (16)

KaðkÞ ¼ Pðk=k � 1ÞHTS�1ðkÞ, (17)

Pðk=kÞ ¼ I � KaðkÞH½ �Pðk=k � 1Þ, (18)

X̄ ðk=kÞ ¼ FX̄ ðk=k � 1Þ þ KaðkÞZ̄ðkÞ. (19)
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The equations of the recursive least-squares estimator are

BsðkÞ ¼ H FMsðk � 1Þ þ I½ �G, (20)

MsðkÞ ¼ I � KaðkÞH½ � FMsðk � 1Þ þ I½ �, (21)

KbðkÞ ¼ g�1ðkÞPbðkÞB
T
s ðkÞ g

�1ðkÞBsðkÞPbðk � 1ÞBT
s ðkÞ þ SðkÞ

� ��1
, (22)

PbðkÞ ¼ g�1ðkÞ I � KbðkÞBsðkÞ½ �Pbðk � 1Þ, (23)

F̂ ðkÞ ¼ F̂ ðk � 1Þ þ KbðkÞ Z̄ðkÞ � BsðkÞF̂ ðk � 1Þ
� �

, (24)

where P is the filter’s error covariance matrix, S(k) the innovation covariance, Ka(k) Kalman gain, Bs(k)
and Ms(k) the sensitivity matrices, Z̄ðkÞ the innovation, Kb(k) the correction gain for updating F̂ ðkÞ, Pb(k)
the error covariance of the estimated input vector, and F̂ ðkÞ the estimated input vector. The fading factor g(k)
is employed to compromise between the fast tracking capability and the loss of estimate accuracy. In
this study, the adaptive weighting method developed in Tuan and Hou [19] is used to select a suitable g(k).
That is,

gðKÞ ¼
1; Z̄ðkÞ

�� ��ps;

s=jZ̄ðkÞj; Z̄ðkÞ
�� ��4s:

(
(25)

Thus, the computational procedure for the estimation of input forces acting on linear lumped-mass systems is
summarized as follows:

Step 1: Derive the dynamic equations (Eqs. (11) and (12)) and obtain the simulated responses Z(k) by
Newmark’s b method, i.e., Eqs. (3)–(8).
Step 2: Use the Kalman filter equations, i.e., Eqs. (13)–(19), to generate the innovation covariance S(k),
innovation Z̄ðkÞ, and Kalman gain Ka(k).
Step 3: Use the recursive least-squares estimator, i.e., Eqs. (20)–(24), to compute the unknown input
disturbance forces F̂ ðkÞ.

3.2. LQG controller [20]

For standard linear quadratic Gaussian problems, the system under control is assumed to be described by
the stochastic discrete-time state space equations as below

X ðkÞ ¼ FX ðk � 1Þ þ LUðk � 1Þ þ Gwðk � 1Þ, (26)

ZðkÞ ¼ H X ðkÞ þ vðkÞ, (27)

where w(k) and v(k) are zero-mean white noises with variances Q and R, respectively. In general, the input
forces sequence F(k) are neglected or assumed to be zeros in conventional LQG design. The conven-
tional LQG method is used to find U(k) as a function of X(k), ipkpN�1, so as to minimize the performance
index

JiðUÞ ¼ E
1

2
XTðNÞQ0X ðNÞ þ

1

2

XN�1
k¼i

XTðkÞQ1X ðkÞ þUTðkÞQ2ðkÞUðkÞ
� �( )

, (28)

where Q1X0, Q240, and Q0X0 are all symmetric weighting matrices.
The separation theorem [21] provides the optimal feedback control law

UðkÞ ¼ �KrðkÞ X̂ ðkÞ. (29)

Here X̂ ðkÞ is the state vector estimated by the Kalman filter, i.e., Eqs. (13)–(19). In other words, X̂ ðkÞ is equal
to X̄ ðkÞ here because of no input forces term in Eq. (26). The regular gain Kr(k) is given by

KrðkÞ ¼ LTP2ðk þ 1ÞLþQ2

� ��1
LTP2ðk þ 1ÞF, (30)
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where P2(k) is the solution of the Ricatti equation

P2ðkÞ ¼ FT P2ðk þ 1Þ � P2ðk þ 1ÞL LTP2ðk þ 1ÞLþQ2

� ��1
LTP2ðk þ 1Þ

n o
FþQ1; kpN, (31)

P2ðNÞ ¼ Q0.

If the limiting solution to the Ricatti equation exists and is denoted by P2(N), then the corresponding steady-
state regulator gain, which is a constant feedback gain, is

K1 ¼ LTP2ð1ÞLþQ2

� ��1
LTP2ð1ÞF. (32)

3.3. Combination of the LQG and input estimation approaches

In the previous section, the LQG control methodology for a system without input forces term was discussed.
The system, e.g. Eq. (26), is not satisfactory to model most dynamic structures because there usually exist
external exciting forces. Therefore, we considered the case where the input forces were not zeros, i.e., Eqs. (11)
and (12). However, the conventional LQG control methodology is not applicable to structures without
neglecting the input disturbance forces, because the entire input dynamic loads histories are not known
a priori.

Hence, we propose a synthesis method for structural vibration control considering the input disturbance
forces. The proposed method is the combination of the LQG and input estimation approaches. The input
estimation approach is introduced to observe the input disturbance forces for the open loop control, which is
used to cancel out the input forces. By combining the open loop and LQG feedback control laws, the synthesis
control method is established as follows:

UðkÞ ¼ �KrðkÞ X̂ ðkÞ � ðLTLÞ�1LT G F̂ ðkÞ. (33)

Here X̂ ðkÞ is the state vector estimated by the Kalman filter with input forces and control forces terms. The
equations are shown as follows:

X̂ ðk=k � 1Þ ¼ FX̂ ðk � 1=k � 1Þ þ LUðk � 1Þ þ GF̂ ðk � 1Þ, (34)

Pðk=k � 1Þ ¼ FPðk � 1=k � 1ÞFT þ GQGT, (35)

ẐðkÞ ¼ ZðkÞ �H½FX̂ ðk � 1=k � 1Þ þ LUðk � 1Þ þ GF̂ ðk � 1Þ�, (36)

SðkÞ ¼ HPðk=k � 1ÞHT þ R, (37)

KaðkÞ ¼ Pðk=k � 1ÞHTS�1ðkÞ, (38)

Pðk=kÞ ¼ I � KaðkÞH½ �Pðk=k � 1Þ, (39)

X̂ ðk=kÞ ¼ FX̂ ðk=k � 1Þ þ KaðkÞẐðkÞ. (40)

The schematic diagram of the structural vibration control by the proposed method is shown in Fig. 4.
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4. Numerical simulations and discussion

To verify the practicability and effectiveness of the proposed control method, numerical experiments are
performed on several linear lumped-mass systems. The computational procedure for the numerical
simulations is summarized as follows:

Step 1: Derive the equations of motion (Eqs. (1) or (2)) and transform them into the state equations.
Step 2: Discretize the state and measurement equations (Eqs. (9) and (10)) into the discrete-time dynamic
equations (Eqs. (11) and (12)) for implementation on digital computers.
Step 3: Establish the quadratic performance index Ji(U), i.e., Eq. (28), and assign the weighting matrices
Q0, Q1, and Q2. To simplify the interpretation of the weighting matrices, it is assumed that
Q0 ¼ Q1 ¼ Qs � I2n�2n and Q2 ¼ Qc � I2n�2n, where Qs and Qc denote the state and control weightings,
respectively.
Step 4: Solve the Ricatti equation, i.e., Eq. (31), and evaluate the regular gain by Eq. (30) in reverse time.
Step 5: Assume the initial state of the structural system and the initial conditions of the input forces
estimator and Kalman filter.
Step 6: Obtain the simulated responses at time k by solving the direct problem, i.e., Eqs. (3)–(8).
Step 7: Estimate the input disturbance forces F̂ ðkÞ by the input estimation approach, i.e., Eqs. (13)–(25).
Step 8: Estimate the full state vector at time k (i.e., X̂ ðkÞ) by the Kalman filter, i.e., Eqs. (34)–(40).
Step 9: Compute the proper control force vector U(k) at time k from Eq. (33).
Step 10: Repeat the above calculation process (Steps 6–9) until the final time step.
m

c y

k

Um

c
y

k

UF

a(t)

a b

Fig. 2. A sdof lumped-mass structure (a) under force excitation and (b) under seismic excitation.
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Fig. 3. A 3dof lumped-mass structure under seismic excitation.
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4.1. Numerical simulation example 1
The linear sdof lumped-mass system studied by Xu and Yang [11], as shown in Fig. 2(a), is considered. The
input force with rectangular, triangular, and sine configurations is given as

F ðtÞ ¼

0 ½N�; 0ptp1 ½s�;

6000 ½N�; 1otp2:4 ½s�;

0 ½N�; 2:4otp5 ½s�;

5400� ð7� tÞ ½N�; 5otp6 ½s�;

0 ½N�; 6otp7 ½s�;

6000� sin
8p
5
ðt� 8Þ

	 

½N�; 7otp13:52 ½s�;

0 ½N�; 13:52otp15 ½s�:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:
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F
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 [
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Fig. 5. Time histories of the estimated and exact input forces of the sdof lumped-mass system (Qs ¼ 109; Qc ¼ 100).
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Fig. 4. Schematic diagram of the active vibration control algorithm.
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The simulation conditions and system parameters are given as the following: null initial conditions,
m ¼ 1100 kg, c ¼ 2700N sm�1, k ¼ 43 426Nm�1, sampling time interval DT ¼ 0.02 s, control force
distribution matrix D ¼ 0.74� I1� 1, covariance of process noise Q ¼ Qw � I1�1, Qw ¼ 1� 101, covariance
of measurement noise R ¼ s2 � I1�1, s ¼ 1� 10�6, state weighting matrices Q0 ¼ Q1 ¼ Qs � I1�1,
Qs ¼ 1� 109, control weighting matrix Q2 ¼ Qc � I1�1, Qc ¼ 1 (Figs. 3 and 4). Fig. 5 depicts the time
histories of the estimated and exact input forces. The time histories of the responses of the sdof linear system
with and without control are shown in Figs. 6 and 7. Fig. 8 shows the overall time histories of the control
forces required for the proposed method and LQG approach.
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Fig. 6. Time histories of the relative displacements of the sdof lumped-mass system (force excitation; Qs ¼ 109; Qc ¼ 100).
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Fig. 7. Time histories of the relative velocities of the sdof lumped-mass system (force excitation; Qs ¼ 109; Qc ¼ 100).
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Table 1

Control results of the linear sdof lumped-mass system using different weightings and control methods under the force excitation

Qs Qc Qs/Qc Control method Relative displacement, y (10�3m) Relative velocity, _y (10�2ms�1) Control force, U (N)

max rms max rms max rms

107 100 107 Proposed method 46.108 21.444 22.698 10.892 8723.3 4582.7

LQG method 246.17 121.75 119.71 55.671 1378.6 640.89

No control 284.80 135.50 140.35 63.498 0.0000 0.0000

109 100 109 Proposed method 15.310 7.2697 16.947 3.7092 10972 4583.5

LQG method 140.80 50.851 31.943 15.201 7221.4 3423.8

No control 284.79 135.49 140.33 63.498 0.0000 0.0000

1016 100 1016 Proposed method 8.3413 3.9276 15.141 2.1478 12630 4593.8

LQG method 81.488 27.142 18.115 5.8216 10310 4027.8

No control 284.79 135.50 140.29 63.500 0.0000 0.0000
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In order to investigate the influences of the weighting matrices, we first change the state weighting from
Qs ¼ 109 to 1016 and keep the value of Qc invariant. Due to enlarge state weighting Qs, the root mean square
(RMS) and maximum values of the relative displacement of the structure controlled by the proposed method
decrease to 3.9276� 10�3 and 8.314� 10�3m, respectively. Next, the state weighting is adjusted from Qs ¼ 109

to 107 with fixed Qc. The RMS and maximum of the relative displacement increase to 21.444� 10�3 and
46.108� 10�3m, respectively. The control results of various weighting matrices are listed in Table 1, including
the RMS relative displacement (velocity), the maximum relative displacement (velocity), the RMS control
force, and the maximum control force.

4.2. Numerical simulation example 2

In the second example, the previous sdof linear system is still considered. However, the input excitation is
given as the horizontal seismic ground acceleration a(t), as shown in Fig. 2(b), which is the first 15 s-part of the
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Fig. 10. Time histories of the relative displacements of the sdof lumped-mass system (seismic excitation; Qs ¼ 109; Qc ¼ 100).
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North–South (NS) EI-Centro earthquake in 1940. The simulation conditions and system parameters are the
same as example 1. Fig. 9 shows the time histories of the exact and estimated input accelerations. Figs. 10–12
display the time histories of the simulated responses and required control force of the sdof linear system using
various control methods. The control results of the sdof structure are also summarized in Table 2.
4.3. Numerical simulation example 3

In the last example, the linear 3dof lumped-mass system studied by Xu and Yang [13], as shown in Fig. 3, is
used to verify the proposed control algorithm. The parameter values of the 3dof system are

m1 ¼ 1100; m2 ¼ 1100; and m3 ¼ 1100 ½kg�,
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Fig. 11. Time histories of the relative velocities of the sdof lumped-mass system (seismic excitation; Qs ¼ 109; Qc ¼ 100).
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Fig. 12. Time histories of the control forces of the sdof lumped-mass system (seismic excitation; Qs ¼ 109; Qc ¼ 100).
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c1 ¼ 1400; c2 ¼ 1400; and c3 ¼ 1400 ½Ns m�1�,

k1 ¼ 493 300; k2 ¼ 493 300; and k3 ¼ 493 300 ½N m�1�.

The simulation conditions are taken as null initial conditions, sampling interval DT ¼ 0.02 s, control force
distribution matrix D ¼ 13 200� I3�3, covariance of process noise Q ¼ Qw � I3�3, Qw ¼ 1� 10�6, and
covariance of measurement noise R ¼ s2 � I3�3, s ¼ 1� 10�8, weighting matrices Q0 ¼ 100 � I6�6,
Q1 ¼ 100 � I6�6, Q2 ¼ 1� I3�3. In this numerical experiment, the first 15 s acceleration of the EI-Centro
earthquake was also taken as the ground acceleration. Fig. 13 shows the time histories of the exact and
estimated input accelerations. Figs. 14–16 display the time histories of the relative displacements, relative
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Table 2

Control results of the linear SDOF lumped-mass system using different weightings and control methods under the seismic excitation

Qs Qc Qs/Qc Control method Relative displacement, y (10�3m) Relative velocity, _y (10�2ms�1) Control force, U (N)

max rms max rms max rms

107 100 107 Proposed method 9.8765 2.3184 9.9107 2.1922 6623.5 1202.8

LQG method 47.684 16.184 47.295 11.134 547.81 129.51

No control 57.667 19.803 51.370 12.974 0.0000 0.0000

109 100 109 Proposed method 1.7439 0.4354 7.5148 1.0857 9948.2 1469.7

LQG method 8.6906 2.5998 8.9770 2.0550 4318.2 1056.3

No control 56.336 19.018 50.961 12.971 0.0000 0.0000

1016 100 1016 Proposed method 1.3006 0.32951 8.2691 1.0453 12264 1560.5

LQG method 6.5989 1.9496 9.2159 1.5866 6260.7 1153.7

No control 57.700 18.986 51.044 12.933 0.0000 0.0000
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Fig. 13. Time histories of the estimated and exact base accelerations of the 3dof lumped-mass system (Qs ¼ 109; Qc ¼ 100).
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velocities, and required control forces, respectively. Next, we tune the values of the state weighting Qs to
improve the control results. The state weighting matrices Q0 and Q1 are taken as Q0 ¼ Q1 ¼ 106 � I6�6. The
relative displacements are depicted in Fig. 17. The control results of the 3dof structural system under control
with various weighting matrices are summarized in Table 3.

4.4. Discussion
(1)
 As illustrated in Figs. 5–17, the control effects of the proposed algorithm and LQG regulator both are
obvious as long as the weighting matrices Q0, Q1, and Q2 are chosen adequately. Comparing the control
results, we can conclude that the proposed synthesis control method is better than the LQG regulator in
vibration control.
(2)
 As observed from the results in Tables 1–3, we can find that the variations of Q0, Q1 and Q2 will have large
effects on the control performances of the LQG and proposed control methods. In general, heavy
weighting matrices for responses with respect to fixed Q2 will improve the control performances of the
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Fig. 14. Time histories of the relative displacements of the 3dof lumped-mass system: (a) y1, (b) y2, and (c) y3 (seismic excitation; Qs ¼ 109;

Qc ¼ 100).
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LQG and proposed algorithms, but the magnitudes of the required control forces need to be increased.
However, the present control method still has a better response reduction capability than that of the LQG
method for various state weightings Qs.
(3)
 In this study, the estimations of unmeasurable input excitations are observed from measurable states; the
deficiency of ignoring unknown input disturbances can be overcome in the optimal design. Therefore, the
idea of the combination of the LQG regulator and input estimation method can be applied to other fields,
such as tracking problems, etc.
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Fig. 15. Time histories of the relative velocities of the 3dof lumped-mass system: (a) _y1, (b) _y2, and (c) _y3 (seismic excitation; Qs ¼ 100;

Qc ¼ 100).
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(4)
 Figs. 14–17 illustrate that the applicability of the present control method facilitates to suppress the
vibrations of linear systems with multiple inputs and multiple outputs. Moreover, even though the
synthesis control law developed in this paper is only applied to linear lumped-mass structural systems, it
can readily be extended to other types of linear structural systems.
(5)
 In the proposed synthesis method, the control input consists of feedforward and feedback parts. The
feedback part based on the LQG methodology is used to stabilize the tracking error dynamics. The LQG
method with state feedback technique can provide some guaranteed robustness properties [22,23].
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Fig. 16. Time histories of the control forces of the 3dof lumped-mass system: (a) U1, (b) U2, and (c) U3 (seismic excitation; Qs ¼ 100;
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In addition, we can incorporate the Loop Transfer Recovery (LTR) method [20] to enhance the robustness
of the system, if necessary.
5. Conclusions

An active control method to suppress the vibrations of linear structural systems is presented. The control
algorithm comprises two parts: the LQG regulator and the input estimation approach. The control



ARTICLE IN PRESS

0 5 10 15

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Time [s]

0 5 10 15

Time [s]

0 5 10 15

Time [s]

R
e

la
ti
v
e

 d
is

p
la

c
e

m
e

n
t 

y
1

 [
m

]

LQG method
proposed method
no control

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

R
e

la
ti
v
e

 d
is

p
la

c
e

m
e

n
t 
y
2

 [
m

]

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

R
e

la
ti
v
e

 d
is

p
la

c
e

m
e

n
t 

y
3

 [
m

]

LQG method
proposed method
no control

LQG method
proposed method
no control

a

b

c

Fig. 17. Time histories of the relative displacements of the 3dof lumped-mass system: (a) y1, (b) y2, and (c) y3 (seismic excitation; Qs ¼ 106;

Qc ¼ 100).
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performance of the proposed method is evaluated through numerical experiments of linear lumped-mass
systems. The simulation results demonstrate that the proposed control method has been successfully applied
to reduce the responses of structures subjected to external excitations. The vibration control performance of
the present method is better than that of the conventional LQG method. The control algorithms for two and
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Table 3

Control results of the linear 3DOF lumped-mass system using different weightings and control methods under the seismic excitation

State weighting Qs 100 106

Control weighting Qc 100 100

Weighting ratio Qs/Qc 100 106

Control method Proposed method LQG method No control Proposed method LQG method No control

Relative displacement, Y (10�3m)

max

y1 5.1888 23.235 56.823 1.3405 6.1924 56.823

y2 3.9948 19.251 43.149 1.6667 7.1171 43.149

y3 2.5302 10.946 25.063 1.2435 1.5331 25.063

rms

y1 1.1038 5.5377 27.277 0.3568 1.8568 27.277

y2 9.0266 4.2662 21.751 0.3349 1.2965 21.751

y3 5.3195 2.3493 12.097 0.2033 0.3110 12.097

Relative velocity, _Y (10�2ms�1)

max

_y1 10.756 21.880 50.722 7.8583 8.6638 50.722

_y2 7.3693 16.469 41.916 2.3385 9.4380 41.916

_y3 4.3591 11.542 26.557 3.8773 4.9562 26.557

rms

_y1 1.5452 5.0499 25.468 9.9785 1.5293 25.468

_y2 1.1182 4.0663 20.353 0.1761 0.5756 20.353

_y3 0.7354 2.3881 11.686 0.1753 0.3212 11.686

Control force, U (10�1N)

max

U1 4.0402 0.8538 0.0000 6.1898 4.3121 0.0000

U2 3.8972 1.5137 0.0000 6.8476 3.6545 0.0000

U3 3.8571 1.8662 0.0000 6.8634 3.7247 0.0000

rms

U1 0.6824 0.2023 0.0000 0.7628 0.9317 0.0000

U2 0.7065 0.3665 0.0000 0.8826 0.9104 0.0000

U3 0.7143 0.4616 0.0000 0.8807 0.7111 0.0000
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three-dimensional linear structural systems are under development. Future work on this study will also include
an experimental study for the proposed method.
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